Probabilistic Edge Map (PEM) for 3D Ultrasound Image Registration and Multi-atlas Left Ventricle Segmentation

نویسندگان

  • Ozan Oktay
  • Alberto Gómez
  • Kevin Keraudren
  • Andreas Schuh
  • Wenjia Bai
  • Wenzhe Shi
  • Graeme P. Penney
  • Daniel Rueckert
چکیده

Automated left ventricle (LV) segmentation in 3D ultrasound (3D-US) remains a challenging research problem due to variable image quality and limited field-of-view. Modern segmentation approaches (shape, appearance and contour model based surface fitting) require an accurate initialization and good image boundary features to obtain reliable and consistent results. They are therefore not well suited for this problem. The proposed method overcomes those limitations with a novel and generic 3D-US image boundary representation technique: Probabilistic Edge Map (PEM). This new representation captures regularized and complete edge responses from standard 3D-US images. PEM is utilized in a multi-atlas LV segmentation framework to spatially align target and atlas images. Experiments on data from the MICCAI CETUS challenge show that the proposed approach is better suited for LV segmentation than the active contour, appearance and voxel classification approaches, achieving lower surface distance errors and better LV volume estimates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A 3D Freehand Ultrasound System for Multi-view Reconstructions from Sparse 2D Scanning Planes

BACKGROUND A significant limitation of existing 3D ultrasound systems comes from the fact that the majority of them work with fixed acquisition geometries. As a result, the users have very limited control over the geometry of the 2D scanning planes. METHODS We present a low-cost and flexible ultrasound imaging system that integrates several image processing components to allow for 3D reconstr...

متن کامل

Atlas-Based Segmentation and Tracking of 3D Cardiac MR Images Using Non-rigid Registration

We propose a novel method for fully automated segmentation and tracking of the myocardium and left and right ventricles (LV and RV) using 4D MR images. The method uses non-rigid registration to elastically deform a cardiac atlas built automatically from 14 normal subjects. The registration yields robust performance and is particularly suitable for processing a sequence of 3D images in a cardiac...

متن کامل

Fast Algorithm for Probabilistic Bone Edge Detection (FAPBED)

The registration of preoperative CT to intra-operative reality systems is a crucial step in Computer Assisted Orthopedic Surgery (CAOS). The intra-operative sensors include 3D digitizers, fiducials, X-rays and Ultrasound (US). FAPBED is designed to process CT volumes for registration to tracked US data. Tracked US is advantageous because it is real time, noninvasive, and non-ionizing, but it is...

متن کامل

Multi-Atlas Segmentation of the Cardiac MR Right Ventricle

As an entry to the MICCAI 2012 Cardiac MR Right Ventricle Segmentation Challenge, this paper presents a multi-atlas-based automatic pipeline for segmenting the right ventricle in MR images. Multiatlas segmentation relies on two major components: image registration to propagate segmentation labels into target image that needs to be segmented, and label fusion to effectively combine those labels ...

متن کامل

Registration of 3D fetal neurosonography and MRI☆

We propose a method for registration of 3D fetal brain ultrasound with a reconstructed magnetic resonance fetal brain volume. This method, for the first time, allows the alignment of models of the fetal brain built from magnetic resonance images with 3D fetal brain ultrasound, opening possibilities to develop new, prior information based image analysis methods for 3D fetal neurosonography. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015